
 

Observations of Hydration and Dehydration  
in the Winter 2000 Arctic Stratosphere 

 
 

R. L. Herman1, K. Drdla2, J. R. Spackman3, D. F. Hurst4,5, C. R. 
Webster1, J. W. Elkins4, E. M. Weinstock6, B. W. Gandrud7,G. C. Toon1, 

M. R. Schoeberl8, H. Jost2, E. L. Atlas7, P. J. Popp5,9, and T. P. Bui2 
 

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.  
2 NASA Ames Research Center, Moffett Field, CA. 
3 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA. 
4 Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO. 
5 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO. 
6 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA. 
7 National Center for Atmospheric Research, Boulder, CO. 
8 NASA Goddard Space Flight Center, Code 916, Greenbelt, MD. 
9 Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO. 

 
 

ICMA conference 
July, 2001 

Innsbruck, Austria



 

Introduction 
 
The 1999-2000 winter was characterized by unusually cold conditions in the Arctic lower 
stratosphere, including a larger area exposed to temperatures cold enough to nucleate 
nitric acid trihydrate (NAT) than ever measured before in the Arctic [e.g., Manney and 
Sabutis, 2000].  If the polar vortex gets colder over the next several decades, this winter 
may typify Arctic winters of the future.  Solid PSCs that form below 195 K are 
ubiquitous in the Arctic winter stratosphere [Fahey et al., 2001] and are predominantly 
NAT [Voigt et al., 2000].  Ice PSCs are stable below the frost point (~188 K), so Arctic 
dehydration has been observed mainly in the coldest winters.  That raises the question: 
did the widespread presence of polar stratospheric clouds (PSCs) in 1999-2000 cause 
irreversible removal or redistribution of stratospheric water?   
 
We examine here total hydrogen H = H2O + 2CH4 + H2 from the NASA ER-2 high-
altitude aircraft during the SAGE III Ozone Loss and Validation Experiment (SOLVE).  
The partitioning of hydrogen between these species is changed by photochemical 
oxidation of CH4 into H2O and H2, oxidation of H2 into H2O, and HOx chemistry that 
includes both sources and sinks of H2 [e.g., Le Texier et al., 1988; Dessler et al., 1994; 
Hurst et al., 1999].  Since these are the three dominant hydrogen-bearing species in the 
stratosphere, H should be conserved in air in which the seasonal cycle of water has been 
averaged out.  In this case, H is changed only by long-term trends in CH4 or H2O, 
dehydration, or hydration. 



 

  

Total Hydrogen Budget 
 

H2O + 2CH4 H2O + 2CH4 + H2 
 JLH  Harvard  JLH  Harvard  

Extravortex (E) 7.32±0.13 7.07±0.18 7.98±0.07 7.75±0.15 
Mean Vortex (V) 7.38±0.11 7.11±0.15 N/A N/A 
Vortex, deploy 1 7.41±0.11 7.09±0.11 N/A N/A 
Vortex, deploy 2 7.36±0.11 7.13±0.11 7.89±0.12 7.66±0.15 
Difference, E-V -0.06±0.17 -0.04±0.23 0.09±0.14 0.09±0.21 

 
Was there a net loss of total hydrogen from the Arctic stratospheric polar vortex during 
the 1999-2000 winter?  Shown above are mean stratospheric data filtered by CH4 < 1.45 
ppmv and θ > 400 K to eliminate the seasonal cycle of water.  The difference between 
mean extravortex and vortex values show insignificant changes in total hydrogen.  
Extravortex H is greater than vortex H solely due to low H2 in the Arctic vortex.  The 
largest difference between the measurements is due to a bias between the JPL Laser 
Hygrometer (JLH) [May, 1998] and the Harvard Lyman-α Hygrometer [Weinstock et al., 
1994].  CH4 data are from the Aircraft Laser Infrared Absorption Spectrometer (ALIAS) 
[Webster et al., 1994], and H2 data are from the Airborne Chromatograph for 
Atmospheric Trace Species (ACATS-IV) [Elkins et al., 1996].  SOLVE deployment #1 is 
Jan. 14 through Feb. 3, 2000, and deployment #2 is Feb. 26 through Mar. 16, 2000.   
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H2O + 2CH4 in the Arctic Vortex 
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In the Arctic vortex, the 
sum H2O + 2CH4 
decreases at lower CH4 
mixing ratios (higher 
altitude).  JLH H2O and 
ALIAS CH4 are shown 
here, but the trend is 
also seen with data from 
the Harvard Lyman–α 
Hygrometer. 



 

H2O + 2CH4 in the Extravortex and Vortex Edge Region 
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Outside the Arctic vortex, 
in the extravortex and 
vortex edge regions, the 
sum H2O + 2CH4 does not 
change as systematically 
as it does inside the 
vortex.  JLH H2O and 
ALIAS CH4 are shown 
here, but the trend is also 
seen with data from the 
Harvard Lyman–α 
Hygrometer.



 

Modeling 
 
To further explore the presence of ice PSCs in the winter Arctic polar vortex, we utilized 
the Integrated Microphysics and Aerosol Chemistry on Trajectories model (IMPACT) 
[Drdla, 1996].  This model follows diabatic trajectories of more than 2000 air parcels 
within the 1999-2000 Arctic polar vortex using UKMO temperatures [Schoeberl et al., 
1993; Schoeberl et al., 2000].  A full particle microphysics code allows condensation, 
freezing, sublimation, and sedimentation of PSCs [Drdla et al., 2001].           
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Conclusions 
 
• During the 1999-2000 winter, mean total hydrogen in the Arctic lower 

stratospheric vortex was not significantly different from the mean value outside 
the vortex.  This implies negligible net loss of water from the Arctic 
stratosphere (400 – 470 K). 

• Isolated episodes of dehydration and hydration were intercepted by the ER-2 
aircraft on several flights.  In particular, on the flight of Jan. 27, 2000, vortex 
air was dehydrated by as much as 0.63 ppmv.   

• Diabatic back-trajectory calculations suggest this air parcel passed through the 
cold pool and experienced a dehydration event during Jan. 9 - 12, 2000. 

• Total hydrogen decreased significantly with height throughout the lower 
stratospheric vortex, indicating a weak but widespread redistribution of water: 
water is low at altitudes corresponding to CH4 < 1.0 ppmv (θ > 445 on Feb. 1, 
2000), and water is high at lower altitudes.  A downward flux of water within 
the Arctic stratospheric vortex due to sedimentation and evaporation of PSCs is 
thus inferred. 
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